

1. Determinare l'ordinata del baricentro del settore circolare non omogeneo di apertura $\frac{\pi}{4}$, massa m e raggio $\sqrt{2}\,R$, la cui densità di massa varia con la legge $\rho(P)=k\,\cos\theta$, con k costante reale positiva e $\theta=x^+\widehat{O}P$.

$$\boxed{\mathbf{A}} \frac{\sqrt{2}+2}{6}R; \quad \boxed{\mathbf{B}} \frac{R}{3};$$

$$\boxed{\mathbf{C}} \frac{\sqrt{2}+1}{3}R; \quad \boxed{\mathbf{D}} \frac{\sqrt{2}}{6}R.$$

2. Calcolare l'energia cinetica del sistema materiale omogeneo di figura, posto nel piano Oyz e costituito da due lamine triangolari ABO e CDO, ciascuna di massa m, e da due aste AD e BC, ciascuna di massa $\frac{1}{2}m$ con $\overline{AB}=\overline{BC}=L$, uniformemente rotante con velocità angolare $\vec{\omega}$ attorno alla retta u, di equazione $(y=x) \land (z=0)$.

3. Comporre i seguenti stati cinetici rotatori $\vec{v}_i = \vec{\omega}_i \times (O - O_i), i = 1, 2, 3$:

$$O_1(1,-1,1)$$
 $\vec{\omega}_1(0,4,-4)$

$$O_2(1,0,2)$$
 $\vec{\omega}_2(2,-2,4)$

$$O_3(2,1,0)$$
 $\vec{\omega}_3(-4,0,-4)$

e determinare lo stato cinetico risultante.

A traslatorio; B nullo; C rotatorio; D elicoidale.

AVVERTENZE:

- $1.\,$ Non è consentita la consultazione di testi e appunti.
- 2. Durata della prova: 45 minuti.
- 3. Punteggi: punti 3 per risposta esatta, punti 0 per risposta non crocettata, punti -1 per risposta errata.
- 4. Ammissione alla 2^a prova scritta con punti 5.