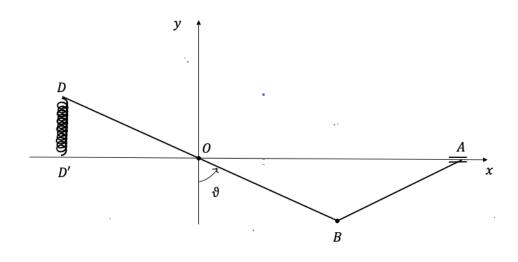

Prova scritta di Meccanica Razionale - 08.07.2025

Cognome e Nome	N. MATRICOLA
C.d.L.:	Anno di Corso: 2 3 altro

ESERCIZIO 1. Nel piano Oxy si consideri il sistema materiale rigido costituito dall'asta omogenea ED, di massa m_1 e lunghezza 3L, e dalla lamina quadrata omogenea OABC, di massa m_2 e lato L, saldate come in figura. Sapendo che $m_1 + m_2 = m$, si chiede di determinare:


- 1. i valori di m_1 e m_2 affinchè il baricentro G del sistema si trovi ad una distanza pari a 2L da E, lungo l'asta (punti 2);
- 2. la matrice d'inerzia I_O della lamina (punti 4);
- 3. la matrice d'inerzia I_O dell'asta (punti 4);
- 4. il momento d'inerzia $I_{Gx'}$ del sistema rispetto alla retta passante per il baricentro del sistema e parallela all'asse Ox (punti 2).

ESERCIZIO 2. In un piano verticale Oxy, si consideri un sistema materiale pesante costituito da un'asta omogenea DB, di massa m e lunghezza 4L, e da un'asta omogenea AB, di massa m e lunghezza 2L, incernierate fra loro in B. L'asta DB ha il baricentro incernierato nell'origine del riferimento, l'asta AB ha l'estremo A scorrevole sull'asse Ox. Oltre alle forze peso, sull'asta DB agisce la forza elastica $\vec{F}_D = -\frac{\alpha mg}{L}(D-D')$, $(\alpha > 0)$, con D' proiezione ortogonale di D sull'asse Ox.

Introdotto il parametro lagrangiano $\theta = y^{-}\hat{O}B$, con $\theta \in [0, 2\pi)$, si chiede di:

- 1. determinare il centro di istantanea rotazione dell'asta AB (punti 1);
- 2. scrivere le equazioni della base e della rulletta (punti 4);
- 3. determinare il potenziale di tutte le forze attive agenti sul sistema (punti 2);
- 4. determinare le configurazioni di equilibrio per il sistema in funzione di α (punti 3);
- 5. studiare la stabilità delle configurazioni di equilibrio per il sistema in funzione di α (punti 3);
- 6. scrivere l'espressione dell'energia cinetica del sistema (punti 3);
- 7. determinare le reazioni vincolari esterne e la reazione vincolare interna in una delle configurazioni di equilibrio stabile, nel caso $\alpha = \frac{1}{2}$ (punti 4).

AVVERTENZE:

- 1. Non è consentita la consultazione di testi e appunti.
- 2. Durata della prova: 120 minuti.
- 3. Ammissione alla prova orale con punteggio 16/30.

Soluzioni

Esercizio 1

1.
$$m_1 = \frac{3}{4} m, m_2 = \frac{1}{4} m$$

2. matrice d'inerzia
$$I_O(Q)$$
: $I_{Ox} = I_{Oy} = \frac{1}{12} \, mL^2$, $I_{Oz} = \frac{1}{6} \, mL^2$, $I_{xy} = -\frac{1}{16} \, mL^2$

3. matrice d'inerzia $I_O(ED)$:

$$I_{Ox} = \frac{21}{4} \, mL^2 \,, \, I_{Oy} = \frac{3}{16} \, mL^2 \,, \, I_{Oz} = \frac{87}{16} \, mL^2 \,, \, I_{xy} = -\frac{15}{16} \, mL^2$$

4. momento d'inerzia: $I_{Gx'} = \frac{4}{3} mL^2$

Esercizio 2

- 1. Con il teorema di Chasles C è l'intersezione del prolungamento di DB con la perpendicolare per A
- 2. In Oxy base: $x^2+y^2=16L^2$, in Ax'y' rulletta: $(x'-2L)^2+y'^2=4L^2$, con Ax' supports di AB e Ay' ortogonale ad AB
- 3. potenziale U delle forze attive:

$$U = mgL\cos\theta(1 - 2\alpha\cos\theta) + c$$

- 4. $\theta_1=0\,, \theta_2=\pi\,,$ indipendenti da α $\theta_3=\bar{\theta}\,,\ \theta_4=2\pi-\bar{\theta}\ \mathrm{con}\ \bar{\theta}=\arccos\frac{1}{4\alpha},\ \mathrm{che\ esistono\ solo\ se}\ \alpha\geq\frac{1}{4}$
- 5. θ_1 stabile per $\alpha < \frac{1}{4}$, θ_2 sempre instabile, $\theta_{3,4}$ stabili se $\alpha > \frac{1}{4}$, $\alpha = \frac{1}{4}$ punto di biforcazione stabile
- 6. reazioni vincolari all'equilibrio se $\alpha = \frac{1}{2}$:

$$\vec{\phi}_A = rac{1}{2} \, mg \, \vec{j}$$

$$\vec{\phi}_O = (0; 2mg)$$

$$\vec{\phi}_B = (0; \frac{1}{2} \, mg)$$

7. energia cinetica:

$$T = 4mL^2\dot{\theta}^2(\frac{1}{3} + \cos^2\theta)$$

3